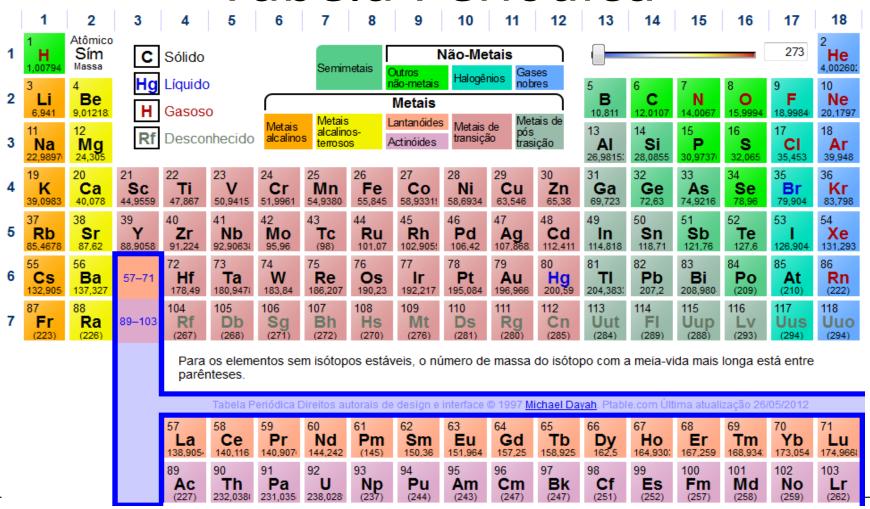


Eletricidade

Prof. Edwar Saliba Júnior Julho de 2012



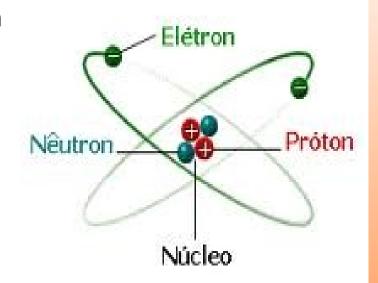
Meios em Cobre

- Toda matéria é composta de átomos;
- A tabela periódica lista todos os tipos conhecidos de átomos e suas propriedades (próximo slide).

Tabela Periódica

Átomos

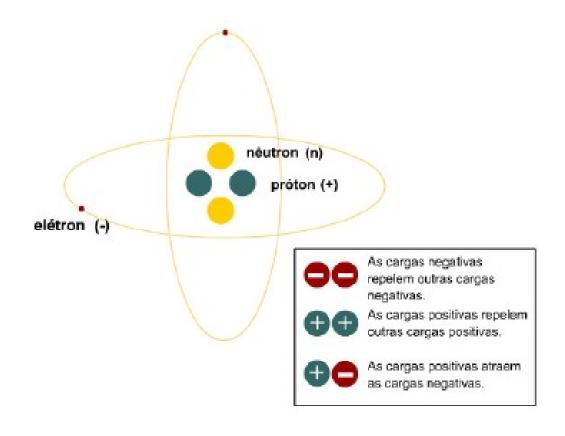
- São constituídos de:
 - Prótons: partículas que possuem carga positiva;
 - Elétrons: partículas que possuem carga negativa e ficam em órbita em torno do núcleo e
 - Nêutrons: partículas sem carga (neutro).
- Prótons e Nêutrons são combinados em um pequeno grupo chamado núcleo;
- Para entendermos melhor, vamos localizar na tabela periódica o elemento Hélio (He).


Hélio

- O Hélio tem o número atômico 2 (tem 2 prótons e 2 elétrons);
- Tem o peso atômico 4;
- Subtraindo-se o número atômico 2 do peso atômico 4, você encontra 2 nêutrons;
- O físico dinamarquês Niels Bohr desenvolveu um modelo simplificado para representar os átomos.

Modelo do Átomo de Hélio

- Se os prótons e nêutrons deste átomo tivessem o tamanho de uma bola de futebol, no meio de um campo de futebol, a única coisa menor que a bola seriam os elétrons, que teriam seu tamanho comparado ao de uma cereja e ficariam em órbita próximos aos acentos periféricos do estádio.
- Em outras palavras, o volume total do átomo inclusive o caminho dos elétrons seria o tamanho do estádio.



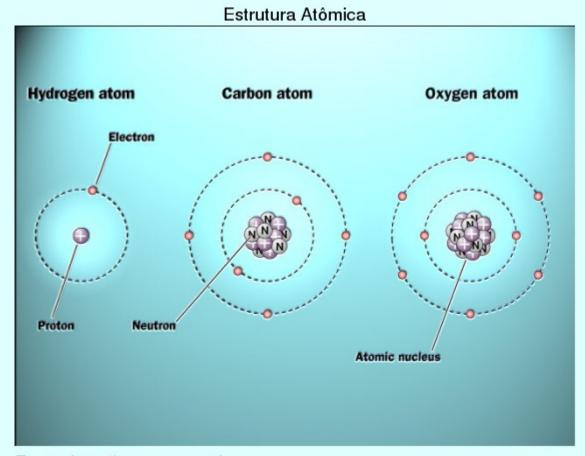
Lei da Força Elétrica de Coulomb

- Esta lei estabelece que cargas opostas reagem entre si com uma força que as levam a se atraírem;
- Cargas semelhantes reagem entre si com uma força que as levam a se repelirem;
- No caso de cargas opostas ou idênticas a força aumenta a medida em que as cargas se aproximam;
- A força é inversamente proporcional ao quadrado da distância da separação;
- Quando as partículas se aproximam muito, a energia nuclear sobrepuja a força elétrica de repulsão e mantém a coesão do núcleo;
- Isto explica porque o núcleo não se desintegra.

Lei da Força Elétrica de Coulomb

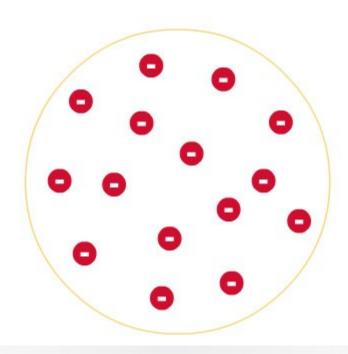
Modelo Atômico de Bohr

- Os elétrons permanecem em órbita, mesmo que os prótons atraiam os elétrons;
- Os elétrons têm velocidade suficiente para orbitarem sem serem atraídos pelo núcleo (da mesma forma que a lua gira em torno da Terra);
- Os prótons não se afastam um do outro devido a uma energia nuclear associada aos nêutrons;
- Prótons e nêutrons são ligados por uma força muito potente;
- Os elétrons são ligados ao redor do núcleo por uma força mais fraca;
- Os elétrons em certos átomos, como nos metais, podem ser liberados e postos a fluir;
- Este mar de elétrons levemente ligados aos átomos é que torna possível a eletricidade;
- A eletricidade é um fluxo livre de elétrons.


•

Modelo Atômico de Bohr

Niels Bohr



Fonte: http://www.eccentrix.com

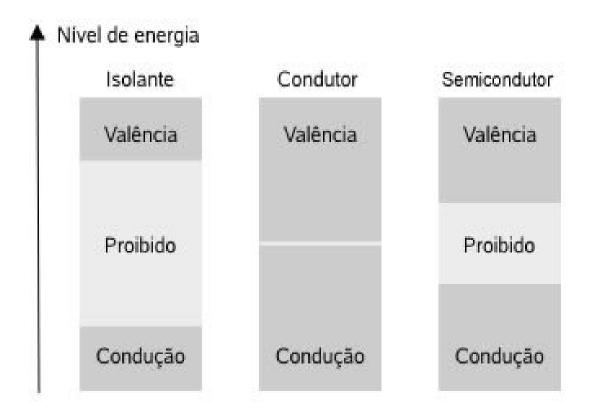
Eletricidade Estática

 Os elétrons desprendidos que se juntam e permanecem em um determinado lugar, sem movimento e com carga negativa, são chamados de eletricidade estática.

Os elétrons que se juntam intimamente não se movem porque os campos elétricos que repelem elétrons se equilibram. O resultado é uma força elétrica igual a zero.

Descarga Eletrostática

- Quando elétrons estáticos têm a oportunidade de passar para um condutor, então é gerada uma "descarga eletrostática" (ESD, do inglês, Electrostatic Discharge);
- A ESD é inofensiva as pessoas, no entanto, pode causar sérios danos a aparelhos sensíveis;
- A ESD pode danificar aleatoriamente chips, dados ou ambos;
- O circuito lógico dos chips dos computadores são extremamente sensíveis às ESD's.



Materiais

- Átomos ou grupos de átomos chamados moléculas, podem ser considerados materiais;
- Os materias podem pertencer a um de três grupos, dependendo de quão facilmente a eletricidade (ou elétrons livres) fluem através dele;
- Grupos:
 - Isolantes,
 - Condutores e
 - Semicondutores.

Grupos dos Materiais

Materiais

 A base para todos os dispositivos eletrônicos é o conhecimento sobre como os materiais isolantes, condutores e semicondutores controlam o fluxo de elétrons e como trabalham conjuntamente em várias combinações.

Voltagem

- A voltagem também é conhecida como Força Eletromotiva (EMF, do inglês Electromotive Force);
- A EMF é relacionada a uma energia elétrica, ou pressão que ocorre quando os elétrons ou prótons são separados;
- A força criada empurra em direção à carga oposta e afasta, em direção contrária à carga semelhante.

Voltagem

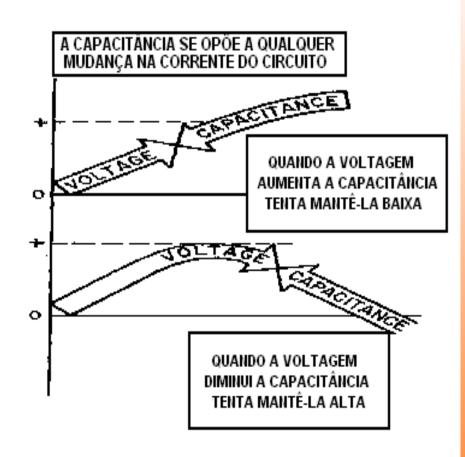
- Numa bateria, ações químicas fazem com que:
 - os elétrons se soltem do terminal negativo;
 - passem por um circuito externo e
 - voltem ao terminal oposto, ou seja, o positivo.
- Lembre-se: eletricidade é um fluxo de elétrons.

Voltagem

- Pode ser criada de três formas:
 - por fricção, eletricidade estática;
 - por magnetismo ou gerador elétrico e
 - por luz ou célula solar.
- A voltagem é representada pela letra V e às vezes pela letra E (energia eletromotiva);
- A unidade de medida é o volt (V);
- O *Volt* é definido como a quantidade de trabalho por unidade de carga, para separar as cargas.

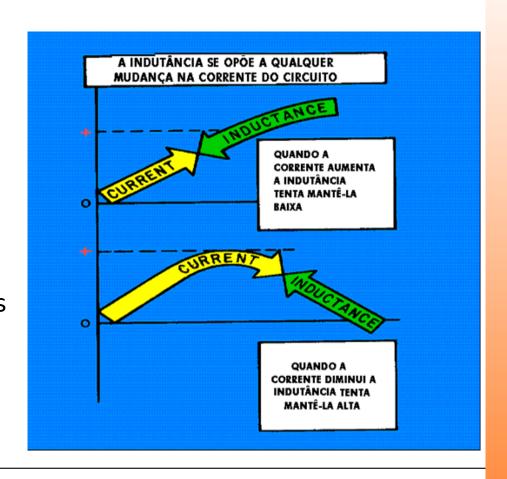
Resistência e Impedância

- Os materiais dos quais flui a corrente elétrica oferecem graus variáveis de resistência ao movimento dos elétrons;
- Materiais que oferecem pouca ou nenhuma resistência são denominados condutores;
- Materiais que não permitem ou restringem o fluxo da corrente são denominados isolantes;
- O grau de resistência é dependente da composição química do material.


Resistência e Impedância

- Todo material que conduz eletricidade tem certa medida de resistência ao fluxo de elétrons através de si;
- Existem nestes materiais outros dois efeitos associados ao fluxo de elétrons: capacitância e indutância.

Capacitância


- É a propriedade de um circuito que se opõe a mudança na voltagem do mesmo;
- Este efeito pode ser observado em qualquer circuito onde a voltagem esteja mudando;
- Normalmente definida como a habilidade de um circuito de armazenar energia elétrica.

Indutância

- Característica de um circuito elétrico que se opõe a mudanças na corrente;
- A reação (ou oposição) é causada pela criação ou destruição de um campo magnético;
- Quando a corrente começa a fluir, linhas magnéticas de força são criadas. Estas linhas de força cortam o condutor induzindo uma força eletromotriz contrária em direção oposta a corrrente.

Resistência e Impedância

- Atenuação: termo muito importante no estudo de redes;
- Refere-se a resistência ao fluxo de elétrons e porque um sinal se degrada ao mover-se pelo conduíte;
- A letra "R" representa resistência;
- A unidade de medida para resistência é ohm (Ω).

Isolantes

- Isolantes elétricos: são materiais que permitem o fluxo de elétrons com grande dificuldade ou não permitem tal fluxo;
- Exemplos de isolantes elétricos:
 - plástico;
 - vidro;
 - ar;
 - madeira seca;
 - papel;
 - borracha e o
 - gás hélio.

Isolantes

 Os materiais que são isolantes elétricos, possuem estrutura química muito estável com elétrons em órbita firmemente presos ao núcleo.

Condutores

- Condutores elétricos: são materiais que permitem o fluxo de elétrons com grande facilidade;
- Os elétrons nas órbitas periféricas não estão fortemente ligado ao núcleo, podendo ser liberados com facilidade;
- A introdução da voltagem faz com que os elétrons livres se desloquem, causando a passagem da corrente.

Condutores

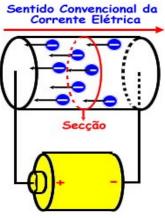
- Os melhores condutores elétricos são os metais como:
 - Cobre (Cu);
 - Prata (Ag) e o
 - Ouro (Au).
- Outros condutores incluem:
 - A solda (mistura de Chumbo (Pb) e Estanho (Sn)) e a água com íons;
- Íon é um átomo que possui mais ou menos elétrons, que o número de prótons em seu núcleo;
- O corpo humano é composto de aproximadamente 70% de água com íons, o que o torna, também, um condutor.

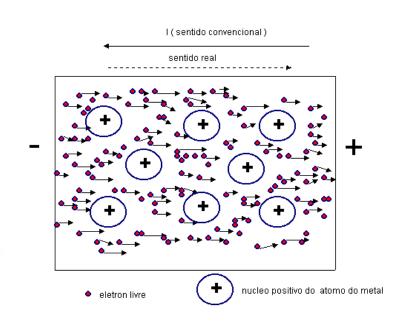
Semicondutores

- São materiais onde a quantidade de eletricidade conduzida pode ser controlada precisamente;
- Exemplos:
 - Carbono (C),
 - Germânio (Ge) e a liga
 - Arsenieto de Gálio (GaAs).
- O Silício (Si) é um dos mais importantes semicondutores. Com ele são produzidos os melhores circuitos eletrônicos de tamanho microscópico.

Curiosidade

- É um metal muito comum, podendo ser encontrado na areia, no vidro e em muitos tipos de rochas;
- A região de San José (Califórnia) é conhecida como vale do Silício porque a indústria da computação (totalmente dependente do Silício) começou nesta área.


Resumo


Isolantes	Condutores	Semicondutores
Os elétrons fluem com dificuldade	Os eolétrons fluem com facilidade	O fluxo de elétrons pode ser controlado com precisão
Plástico Borracha Ar	Cobre (Cu) Prata (Ag) Ouro (Au)	Carbono (C) Germânio (Ge) Arseneto de Gálio (GaAs) Silício (Si)
Papel Madeira Seca Vidro	Solda Água com Íons Seres humanos	

Corrente Elétrica

- Fluxo de cargas criado quando os elétrons se deslocam;
- Em circuitos elétricos a corrente é criada pelo fluxo de elétrons livres;
- Quando a voltagem, ou pressão elétrica, é aplicada e há uma passagem para a corrente, os elétrons deslocam-se do terminal negativo, através da passagem, até o terminal positivo.

Corrente Elétrica

- O terminal negativo repele os elétrons e o positivo os atraem;
- A letra "i" representa a Corrente Elétrica. E sua unidade de medida é o Ampere (A);
- Um ampere é definido como o número de cargas por segundo, que passa por um ponto do caminho.

Corrente Elétrica

- A amperagem ou corrente pode ser imaginada como o número ou volume do tráfego de elétrons que está fluindo;
- A voltagem pode ser considerada como a velocidade do tráfego dos elétrons;
- amperagem * voltagem = watt
- Dispositivos elétricos: lâmpadas, motores e etc. são classificados em termos de watts;
- Um watt é definido como a quantidade de energia produzida ou consumida por um dispositivo.

Curiosidade

- É a corrente em um circuito elétrico que realmente faz o trabalho;
- Exemplos:
 - Eletricidade Estática possui uma voltagem muito alta (tanto é que pode pular um espaço de 2,5 cm ou mais), no entanto possui uma corrente muito baixa e como resultado pode criar um choque, mas não lesões permanentes;
 - O motor de partida de um automóvel opera com uma voltagem muito baixa (12 volts), no entanto exige uma amperagem muito alta para dar partida no motor;
 - Raios possuim tanto a amperagem quanto a voltagem altíssimas, podendo causar danos e ferimentos gravíssimos.

Circuitos

- As correntes fluem em loops fechados chamados circuitos;
- Os circuitos devem ser compostos por materiais condutores e ter fontes de voltagem;
- A voltagem faz com que a corrente flua enquanto a resistência e a impedância se opõem a isto.

Circuitos

- Se houver um caminho, a eletricidade fluirá naturalmente para a terra;
- A corrente flui através de caminhos que oferecem menos resistência;
- Quando um aparelho elétrico tem uma tomada com 3 pinos, um deles serve como terra ou zero volts;
- O pino terra fornece um caminho para os elétrons fluírem para a terra, pois, a resistência ao atraverssar o corpo seria maior que a resistência ao fluir diretamente para a terra.

Terra

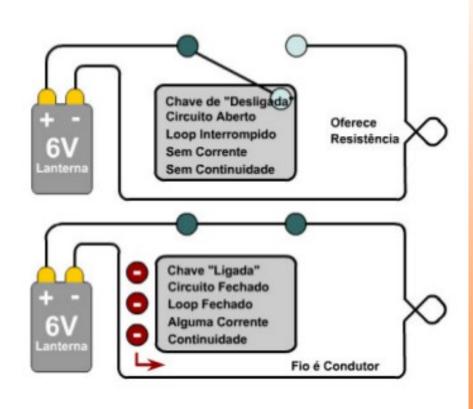
- Geralmente significa nível de zero volts quando se faz a medição elétrica;
- A voltagem se faz pela separação das cargas, o que significa que sua medição deve se dar entre dois pontos distintos.



Analogia

 A relação entre voltagem (V), corrente (I) e resistência (R) é:

$$V = R * I$$


 Esta é a lei de Ohm.

Exemplo de Circuito

- Os elétrons fluem em circuitos fechados ou loops completos;
- O processo químico na bateria provoca o acúmulo de carga que proporciona uma voltagem;
- As linhas representam um condutor, um fio de cobre, por exemplo;
- Quando o circuito está fechado ou em curto, os elétrons se deslocam de um pólo ao outro;
- A lâmpada oferece resistência, fazendo com que os elétrons liberem energia em forma de luz.

Bibliografia

- ALBUQUERQUE, Rômulo O. Condutores e Isolantes. Disponível em: http://www.etelg.com.br/downloads/eletronica/cursos/Aulas/condutores e isolantes.html> Acesso em: 31 jul. 2012.
- BISQUOLO, Paulo Augusto. **O movimento ordenado de elétrons em condutores**. Disponível em: http://educacao.uol.com.br/fisica/corrente-eletrica-o-movimento-ordenado-de-eletrons-em-condutores.jhtm Acesso em: 31 jul. 2012.
- CAVALCANATE, Kleber G. Semicondutores. Disponível em: http://www.mundoeducacao.com.br/fisica/semicondutores.htm Acesso em: 25 jul. 2012.
- Governo do Estado do Paraná. Secretaria da Educação. Estrutura Atômica. Disponível em: http://www.educadores.diaadia.pr.gov.br/modules/mylinks/viewcat.php?cid=16&letter=E&min=60&orderby=titleA&show=10 Acesso em: 17 jul. 2012.
- MIRANDA, José Carlos. Nova Eletrônica. Disponível em: http://www.novaeletronica.net/curso_el_basica/05_indutancia.htm Acesso em: 27 jul. 2012.
- Ptable. Tabela Periódica. Disponível em: http://www.ptable.com/?lang=pt Acesso em: 05 jul. 2012.
- RINCON, Jc. Genética. **Os Átomos**. Disponível em: http://www.rincon.com.br/Paginas/Genetica.htm Acesso em 02 jul. 2012.
- TANENBAUM, Andrew S.; WETHERALL, David. Redes de Computadores. 5ª. ed., São Paulo: Pearson Prentice Hall, 2011.
- Universidade Federal do Rio Grande do Sul. Instituto de Física. **O Átomo de Bohr**. Disponível em: http://www.if.ufrgs.br/tex/fis01043/20012/Luis/index.htm Acesso em: 17 jul. 2012.
- Wikipedia. Capacitância. Disponível em: http://pt.wikipedia.org/wiki/Capacit%C3%A2ncia Acesso em: 27 jul. 2012.